2013年10月28日 星期一

Almost half of Industrial automation sales in Asia

A recent report by IHS has shown that in 2012, capital expenditure on industrial automation equipment in Asia reached a total of $76.6bn, representing 46% of global investments in the sector.
Despite this established and rising trend, selling automation computers equipment in Asia remains a clear business opportunity and one where many European providers are lagging behind.

In order to help businesses better understand how to take advantage of the current climate and increase their industrial automation sales in Asia, particularly China, the CC-Link Partner Association (CLPA) is hosting a seminar entitled ‘Gateway to China’. The event will take place on 24th September at the Mitsubishi Electric Europe Tokyo Conference Suite in Hatfield.

In light of the sensitive current economic climate, many Asian companies are taking a more careful approach to investment – they are becoming more demanding towards their suppliers and making more enquiries before purchasing. Furthermore, according to IHS’ research, several Chinese manufacturers are currently developing products which are in direct competition with the ones provided by Western suppliers of industrial automation. These are only a few of the obstacles facing European vendors who want to penetrate the Asian market to change the way they do business.


Flexibility and the ability to respond to very specific demands are becoming essential factors when dealing with the Asian market. Being able to offer technologies and solutions which are compatible with the needs of Asian clients is no longer an option, it’s a must.

refer to:http://www.connectingindustry.com/automation/asia-claims-almost-half-of-automation-sales.aspx


2013年10月1日 星期二

Register Protection under main event


Register Protection
There may be modules in the design whose configuration should not change during the run phase of the chip, and in doing so may affect the proper operation of the system. One can disable access to these registers during run phase, or make such registers as write-once.

Redundant critical on-chip modules like processor, ISO, DMA controller, internal clock generator, and communications peripherals can improve reliability should a primary hardware module become non-functional while the vehicle is running. Such a system can have in-built error detection mechanisms and on-the-fly switching to redundant hardware to mitigate threats to passenger safety.
But this kind of redundant hardware architecture comes with the penalty of increased area and higher power management in silicon. Area penalties can be minimized by intelligent selection of which functions need to be duplicated in silicon. Power can be minimized by adopting power and clock gating in the redundant modules. Some  in-vehicle computers can be implemented in lock-step of each other, where primary and redundant modules process the same input. Mismatch in the output of the lock-step modules indicates a defect in either of the modules. The system can switch itself off or take appropriate safety measures to avoid any real-time failure. Redundant hardware should be placed quite far in silicon from the primary embedded systems to avoid tampering of both modules together.

refer to: http://www.edn.com/design/automotive/4421704/Safety---security-architecture-for-automotive-ICs